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Abstract
A spiralling slender non-Newtonian liquid jet emerging from a rapidly rotating
orifice is examined. The effect of the non-Newtonian rheology on the
trajectory of the jet and its linear instability are determined using a mixture of
computational and asymptotic methods. The sizes of the droplets produced by
this instability are determined by considering the most unstable wave mode.
This enables a quantitative comparison between theoretical and experimental
results to be made, by comparing droplet sizes predicted from the theory with
experimental measurements. At lower Weber numbers some good points of
agreement have been obtained. At higher Weber numbers jet break-up becomes
increasingly complex and the possibility of break-up being due to absolute,
rather than convective, instability is discussed.

PACS number: 47.50.−d

1. Introduction

Curved liquid jets are relevant to the prilling process, which is widely used in industry to create
small spherical pellets from molten material in many applications, such as the manufacture
of fertilizer (urea), aluminium and magnesium pellets [1, 2]. In this process, molten liquid is
pumped into a perforated vertical cylindrical drum suspended at the top of a cooling tower.
As the drum rotates about its vertical axis, the liquid is flung outwards towards the drum wall
and thousands of long curved jets are produced from the perforations on its surface. These
break up due to the growth of capillary instabilities on the surface of the jets and the droplets
produced fall against a counter current of cool air and solidify to form pellets. There are
numerous economic reasons to control this instability process, to produce pellets of uniform
size and suppress the formation of fine particles.

In Wallwork et al [3] asymptotic and numerical results were presented for an unstable
inviscid liquid jet emerging from a rapidly rotating drum. This work was extended in Decent
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et al [4] to include the effects of Newtonian viscosity. It was found that the trajectory and
steady state of a liquid jet emerging from a rotating drum is only slightly affected by viscosity,
but the instability process was dominated by viscosity and surface tension. Good agreement
was obtained between theory and experimental data.

In the industrial context, the processing of non-Newtonian fluids is common. In a non-
Newtonian fluid, the relation between the shear stress and the strain rate is nonlinear, and
can also be time-dependent. The addition of polymers or immiscible phases creates liquid
mixtures with non-Newtonian flow properties. Paints, slurries and polymer solutions are all
examples which are ubiquitous in the industrial environment.

Despite obvious industrial interest, studies of the break-up of non-Newtonian jets are
comparatively sparse when compared to the myriad of literature available on Newtonian
jets. The focus of the majority of studies is on straight liquid jets, that being an axially
symmetric flow with the jet having a circular cross-section at every point along its length,
and both time-dependent (viscoelastic) and time-independent fluids have been considered.
Work on viscoelastic materials (mostly polymer solutions) has elucidated some interesting
features, notably the more rapid growth of nonlinear surface tension driven deformations, yet
a retardation of the break-up of viscoelastic filaments due to extensional stresses [5]. This
leads to the classic ‘beads on a string’ jet shape which has been studied in depth by e.g. Li and
Fontelos [6] and Clasen et al [7]. A review of this area is given by McKinley [8].

A number of straight jet studies have investigated the behaviour of time-independent shear
thinning or shear-thickening fluids; models have been developed assuming a power or Carreau
constitutive law. Doshi et al [9] performed asymptotic solutions of the governing equations
and showed that the effects of inertia become increasingly dominant as the point of pinch-off is
reached, as found for Newtonian fluids [10]. Dravid et al [11] found good agreement between
these models and experiments at low Reynolds numbers.

A number of authors have investigated the instability of non-Newtonian fluids with power-
law rheology for classical problems, including flow down an inclined plane [12, 13], between
concentric cylinders [14] as well as gravity driven shear flows [15].

Two recent studies examine the break-up of curved jets assuming a power-law dependence
of the fluid rheology. Uddin et al [16] performed a linear asymptotic analysis and produced
simulations for both shear thinning and shear thickening dependences, assuming that the
unstable waves are long. Later work produced a nonlinear model for long waves [17], which
enabled prediction of drop size and jet shape as well as the break-up length, which could also
be obtained from the earlier linear analysis.

In this paper, we firstly determine the influence of non-Newtonian effects on the trajectory
of our curved liquid jets, and then apply the methods of Rayleigh [18] and Weber [19] to
determine their instability. The stability of the jet is analysed using spatial stability methods
[20]. A series of experiments was also performed, to see how altering various parameters
affects the trajectory, stability and droplet formation of the jet. Theoretical predictions are
then compared to experimental results. The calculations presented here extend those of
[16, 17] by making no assumption as to whether the waves are, in any sense, long or short,
which gives rise to a more general dispersion relation.

2. The equations of motion

To model the prilling process a large circular cylindrical drum of radius s0, rotating about its
vertical axis of symmetry with angular velocity, �, is considered. A liquid jet emerges from
a small circular orifice of radius a, situated on the curved surface of the cylinder.
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The problem is examined by considering a co-ordinate system (x, y, z) which rotates with
the drum. The origin of the co-ordinate system is chosen to be at the axis of the drum in line
with the centre of the orifice. The orifice’s centre is positioned at (s0, 0, 0) in this co-ordinate
system, with the x-axis in the direction normal to the surface of the drum in the initial direction
of the jet, and the z-axis orthogonal to the x-axis in the plane of the centreline of the jet. The
positive z-axis points in the direction opposite to the motion of the drum. The y-axis points
vertically upwards and is orientated in the direction opposite to gravitational acceleration.

The rotation of the jet causes the jet to curve on leaving the orifice and an analysis of
the jet in the rotating (x, y, z) plane becomes difficult. Therefore, a curvilinear co-ordinate
system, (s, n, φ), previously used by Wallwork et al [3], is used to describe the curved jet,
where s is the arclength along the centreline of the jet, measured from the orifice, and (n, φ)

are the plane polar co-ordinates in the radial and azimuthal directions in any cross-section of
the jet. The origin of the co-ordinate system is at the centre of the circular cross-section of the
jet. A diagram of the co-ordinate system can be found in [3]. The associated unit vectors are
denoted by es, en and eφ, respectively.

The effects of gravity on the jet can be neglected if the centripetal acceleration of the jet,
s0�

2, where � is the rotation of the drum (rad s−1), is much greater than the acceleration due
to gravity, g, acting in the negative y direction, as is the case with industrial prilling. Thus,
the jet’s centreline is assumed to lie solely in the x–z plane and the centreline of the jet is
given by (X(s, t) + s0, 0, Z(s, t)) in Cartesian co-ordinates, where t is the time and X and Z
are functions to be found.

Non-dimensional equations are derived as in Uddin et al [16], using the transformations

ū = u

U
, v̄ = v

U
, w̄ = w

U
, p̄ = p

ρU 2
, n̄ = n

a
, ε = a

s0
,

R̄ = R

a
, s̄ = s

s0
, t̄ = tU

s0
, X̄ = X

s0
, Z̄ = Z

s0
, η̄ = η

k
,

(2.1)

where U is the exit speed of the jet in the rotating frame, ρ is the liquid density, ε is a small
aspect ratio, p is the pressure, R is the jet radius, k (Pa sα) is the fluid consistency index, and u,
v and w are the tangential, radial and azimuthal velocity components relative to the centreline
of the jet, respectively. The bars denote dimensionless quantities in the above expressions.

For power-law fluids

τ = η(∇u + (∇u)T ) = ηγ, (2.2)

where ∇u is the velocity gradient tensor, the transpose of which is (∇u)T , τ is the stress
tensor, γ is the rate of strain tensor and η is the apparent (effective) viscosity and is a function
of shear rate, γ̇ , such that

η = kγ̇ α−1, (2.3)

where α is the flow index number and is dimensionless. Fluids which follow such a model
are deemed shear thickening or shear thinning depending on whether α is greater than, or less
than unity. In the special case when α = 1, k = η and the Newtonian fluid is recovered. The
shear rate is given by the second invariant of the rate of strain tensor:

γ̇ =
√

γ : γ

2
. (2.4)

From (2.2), we have that τij = ηγij . It is possible to evaluate the nine stress components
and an expression for η can be obtained by using the expressions for γij , such that
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η = k
∑
ij

γij γij

2

α−1
2

. (2.5)

The flow is described using the velocity vector u = ues + ven + weφ. The overbars are
dropped and we arrive at the equations of motion describing the dynamics of the jet as in Uddin
et al [16]. These include the continuity equation, Navier–Stokes equations, and the kinematic
condition, tangential and normal stress conditions on the jet’s surface n = R(s, φ, t) in this
co-ordinate system. The resulting non-dimensional equations of motion differ to those found
in Decent et al [4] through the dynamic viscosity being replaced by η and the inclusion of
derivatives of η. In [16], Uddin et al considered these equations using a long wavelength
assumption that is not adopted here, so this paper presents a more general approach.

We also have an arclength condition which is

X2
s + Z2

s = 1 (2.6)

and

v = w = 0 on n = 0, (2.7)

since on the centreline of the jet there is purely tangential flow.

3. Asymptotic form of the steady-state solutions

In Wallwork et al [3], an inviscid steady jet trajectory and steady expressions for the velocity,
pressure and jet radius, based on a regular slender jet asymptotic expansion, using 0 < ε � 1,
were obtained. This calculation was extended in Decent et al [4] to include Newtonian
viscosity and is adapted here to include non-Newtonian power-law rheology.

The steady jet asymptotic expansions for u, v, p,R,X,Z from Wallwork et al [3] are
applied, along with a steady jet expansion for η, the apparent viscosity; w is taken to be zero,
so that there is no velocity component in the azimuthal direction. The expansions are

u = u0(s) + εu1(s, n, φ) + O(ε2),

p = p0(s, n, φ) + εp1(s, n, φ) + O(ε2),

R = R0(s) + εR1(s, φ) + O(ε2),

X = X0(s) + εX1(s, φ) + O(ε2),

η = η0(s) + εη1(s, n, φ) + O(ε2),

(3.1)

where ui = uies + vien, v0 = 0 and X i = Xi i + Zik for i = 0, 1, . . . . For simplicity of
notation the leading-order components X0 and Z0 are rewritten as X and Z.

When this asymptotic expansion is considered, the expression for η is greatly simplified
from (2.5), and can be expressed as

η = k|
√

3u0s |α−1

(
1 + (εn)

α − 1

u0s

((
u0

(
XsZss − ZsXss

)
− u0s

2

(
XsZss − ZsXss

))
cos φ

)
+ O(ε)2

)
.

The leading-order equations are obtained for the steady flow as

n
du0

ds
+ v1 + n

∂v1

∂n
= 0, (3.2)

u0
du0

ds
= −∂p0

∂s
+

1

Rb2
((X + 1)Xs + ZZs) +

η0

Reα

(
1

n

∂u1

∂n
+

∂2u1

∂n2
+

1

n2

∂2u1

∂φ2

)
, (3.3)
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∂p0

∂n
= 0, (3.4)

−cos φ(XsZss − ZsXss)u
2
0 = −∂p1

∂n
− 2u0 cos φ

Rb
+

cos φ

Rb2
((X + 1)Zs − ZXs)

+
η0

Reα

(
1

n

∂v1

∂n
+

∂2v1

∂n2
+

1

n2

(
−v1 +

∂2v1

∂φ2

))
, (3.5)

∂p0

∂φ
= 0, (3.6)

sin φ(XsZss − ZsXss)u
2
0

= − 1

n

∂p1

∂φ
+

2u0 sin φ

Rb
+

sin φ

Rb2
(ZXs − (X + 1)Zs) +

η0

Reα

(
2

n2

∂v1

∂φ

)
, (3.7)

u0
dR0

ds
= v1 on n = R0, (3.8)

∂u1

∂n
= u0 cos φ(XsZss − ZsXss) on n = R0, (3.9)

p0 = 1

nWe
on n = R0, (3.10)

p1 − 2η0

Reα

∂v1

∂n
= 1

We

(
− 1

R2
0

(
R1 +

∂2R1

∂φ2

)
+ cos φ(XsZss − ZsXss)

)
on n = R0,

(3.11)

v1 = 0 on n = 0 (3.12)

and

X2
s + Z2

s = 1. (3.13)

The dimensionless parameters in these equations are the Weber number, We = ρU 2a/σ , the
Rossby number, Rb = U/ (s0�), the aspect ratio, ε = a/s0 (which is chosen to be small as
the asymptotics are based on this; this also corresponds to a slender jet) and the generalized
Reynolds number, Reα = ε(ρ/k)sα

0 U 2−α = O(1). This scaling is necessary so that in
the following section it is possible to obtain a distinguished limit in the resulting unstable
equations.

On first inspection the above equations appear different to the leading-order equations
for the inviscid case stated in Wallwork et al [3]. However, at leading-order these equations
actually produce the same trajectory as in the inviscid case. Guided by Wallwork et al
[3] and Decent et al [4], from the continuity equation (3.2) and (2.7), it is possible to
obtain v1 = − n

2
du0
ds

. Substituting this expression for v1 into equations (3.5) and (3.7), it
can be seen that the non-Newtonian terms on the right-hand sides of these equations become
identically equal to zero. Therefore, apparent viscosity now only appears in (3.3) and in (3.11).
Equation (3.3) can be rewritten as

f (s) = ∇2
n,φu1, (3.14)

where

∇2
n,φ = 1

n

∂

∂n
+

∂2

∂n2
+

1

n2

∂2

∂φ2

is the in-plane Laplacian operator. Equations (3.4) and (3.6) imply that p0 = p0(s). In (3.14),

f (s) = Reα

η0

(
u0

du0

ds
+

dp0

ds
− 1

Rb2
((X + 1) Xs + ZZs)

)
.

5



J. Phys. A: Math. Theor. 43 (2010) 055501 V L Hawkins et al

Therefore, (3.14) has to be solved subject to (3.9). This is a Neumann problem on a circular
domain, where s is a parameter. The method of Nayfeh [21] can be followed closely and a
solvability argument can be used to analyse the problem. To determine a solvability condition,
(3.14) is multiplied by u(s, n, φ) and the result is integrated over the domain of interest
S (0 � n � R0, 0 � φ � 2π ), giving∫∫

S

u∇2
n,φu1 dS =

∫∫
S

uf (s) dS. (3.15)

Now from Green’s identity∫∫
S

(
u∇2

n,φu1 − u1∇2
n,φu

)
dS =

∫
B

(
u

∂u1

∂n
− u1

∂u

∂n

)
dB, (3.16)

where B is the boundary of S (so that n = R0 on B). Let u satisfy the homogeneous Neumann
problem, so that

∇2
n,φu = 0 with

∂u

∂n
= 0 on n = R0, (3.17)

while u1 satisfies (3.14) subject to

∂u1

∂n
= g(s) cos φ on n = R0, (3.18)

where g(s) = u0 (XsZss − XssZs). Therefore,∫∫
S

u∇2
n,φu1 dS =

∫
B

u
∂u1

∂n
dB. (3.19)

From (3.15), (3.18) and (3.19) we obtain∫ 2π

0

∫ R0

0
unf (s) dn dφ =

∫ 2π

0

[
u

∂u1

∂n

]
n=R0

R0 dφ =
∫ 2π

0
[u]n=R0

R0g(s) cos φ dφ. (3.20)

The general solution to

∇2
n,φu = 0

is given by

u = β(s)φ + σ(s)ln(n) + γ (s) +
∞∑

λ=1

nλ(Cλ cos(λφ) + Dλ sin(λφ)). (3.21)

The term β(s)φ is not periodic with 2π and σ(s)ln(n) is singular at n = 0. Therefore,
β(s) = σ(s) = 0 for all s. Consequently,[

∂u

∂n

]
n=R0

=
∞∑

λ=1

λRλ−1
0 (Cλ cos(λφ) + Dλ sin(λφ)). (3.22)

For u to satisfy the homogeneous problem (3.17), Cλ = Dλ = 0 for all λ. Therefore, the
general solution to (3.14) which is bounded in 0 � n � R0 and also periodic in φ with period
2π is u = γ (s) for some γ (s). The left-hand side of (3.20) becomes

γ (s)f (s)

∫ 2π

0

∫ R0

0
n dn dφ = γ (s)f (s)πR2

0, (3.23)

and the right-hand side of (3.20) gives

γ (s)R0g(s)

∫ 2π

0
cos φ dφ = 0. (3.24)
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Therefore, γ (s)f (s)R2
0 = 0. Here, R0 cannot be zero and since u = γ (s) is the general

solution to the homogeneous problem, we must have f (s) = 0 for all s (see Nayfeh [21]).
Therefore, (3.3) and (3.9) give rise to two equations, namely f (s) = 0 and ∇2

n,φu1 = 0.
Neither of these expressions contain apparent viscosity.

Finally if we perform the calculation sin φ(3.5) + cos φ(3.7), we obtain

sin φ
∂p1

∂n
+ cos φ

1

n

∂p1

∂φ
= 0,

which has the solution p1 = n cos φg1(s) + h1(s) + k1(s), where k1(s) is the viscous part of
p1. Substituting this solution into (3.11) we obtain

R0 cos φg1(s) + h1(s) + k1(s) +
η0

Reα

du0

ds

= 1

We

(
− 1

R0

(
R1 +

∂2R1

∂φ2

)
+ cos φ (XsZss − XssZs)

)
,

which has the solution R1 = g2(s) cos φ + g3(s) sin φ − h1(s)WeR2
0 and k1(s) = − η0

Reα

du0
ds

.
Since R1 must be periodic in φ with period 2π , it cannot have a particular solution of the form
φ sin φ. Therefore,

g1 = 1

We
R0 (XsZss − XssZs)

and

p1 = n

WeR0
cos φ (XsZss − XssZs) + h1(s) − η0

Reα

du0

ds
, (3.25)

where h1(s) could be found at next order in the asymptotic expansion. It should be noted
that p1 only appears as derivatives with respect to n and φ in equations (3.5) and (3.7). By
substituting (3.25) into (3.5) and (3.7) no viscous contribution from p1 is obtained since the
viscous term in (3.25) in η0 is dependent on s only. Therefore, the non-Newtonian terms
vanish and the same leading-order problem for the trajectory is found here as in the inviscid
case in Wallwork et al [3] along with the following leading-order equation for η0:

η0 =
∣∣∣∣√3

du0

ds

∣∣∣∣α−1

, (3.26)

which gives the non-Newtonian component of the system. Hence, the apparent viscosity does
not affect the steady solution at leading order, except in (3.26) and in a correction to p1 in
(3.25) which does not affect the trajectory, velocity, pressure or jet radius at leading order.
This confirms the approach adopted in [16, 17] and Părău et al [22] also showed numerically
that viscosity is not important to the trajectory except in very high viscosity liquids. The
slender jet approximation in this case results in no shear across the jet at leading order.

4. Linear instability of the steady-state solutions

A linear stability analysis of the steady-state solutions is now performed using

u = ū + δũ(s, s̄, t, t̄ , n, φ),

p = p̄ + δp̃(s, s̄, t, t̄ , n, φ),

R = R̄ + δR̃(s, s̄, t, t̄ , φ),

X = X̄ + δεX̃(s, s̄, t, t̄ ),

η = η̄ + δη̃(s, s̄, t, t̄ , n, φ),

(4.1)

7
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where (ū, ũ) = (ū, ũ)es + (v̄, ṽ)en + (w̄, w̃)eφ, (X̄, X̃) = (X̄, X̃)i + (Z̄, Z̃)k and δ

is a small dimensionless parameter, such that 0 < δ � ε � 1, which measures the
size of the unsteady disturbances as in Wallwork et al [3] (we note that we first tried
X = X̄ + δX̃0(s, s̄, t, t̄ ) + δεX̃(s, s̄, t, t̄ ), but X̃0 was found to be identically equal to
zero). These linear perturbations disturb the basic steady solution (denoted by a quantity with
an overbar in (4.1)), which are functions of s, n, φ, by unsteady quantities which are functions
of s, s̄, t, t̄ , n and φ, where s̄ = s

ε
is a short lengthscale and t̄ = t

ε
is a small timescale associated

with short wave-like disturbances. The unsteady perturbations are denoted by variables with
a tilde. Therefore, the small unsteady components allow motion on a short length scale which
scales with the orifice a. These equations are substituted into the non-Newtonian equations
of motion and linearized in the unsteady quantities (taking terms of O(δ)). Having taken the
leading-order equations in ε, we then look for solutions in modes of the form

ũ = û(s, n, φ, t)exp(ik(s)s̄ + λ(s)t̄) + c.c.,

p̃ = p̂(s, n, φ, t)exp(ik(s)s̄ + λ(s)t̄) + c.c.,

R̃ = R̂(s, φ, t)exp(ik(s)s̄ + λ(s)t̄) + c.c.,

X̃ = X̂(s, t)exp(ik(s)s̄ + λ(s)t̄) + c.c.,

(4.2)

where û = ûes + v̂en + ŵeφ, X̂ = X̂i + Ẑk, c.c. denotes complex conjugate, k(s) is the
wavenumber and λ(s) is the wave frequency. Looking for solutions by expanding the remaining
unknowns (in the variables with ‘hats’) in Fourier series in φ, it is possible to find a countably
infinite set of eigenvalue relationships, each associated with cos(nφ) or sin(nφ) for each
integer n. After some lengthy algebra it can be determined that these are stable modes for
n � 1, plus one unstable mode, corresponding to n = 0, which has the following eigenvalue
relation:

−2ik5η0WeI1(k̃R0)I0(kR0)R
2
0u0 + k5ReαI1(kR0)I1(k̃R0)R

2
0

+ k4WeReαI0(kR0)I1(k̃R0)R
2
0u

2
0 − 2ik4η0WeI1(k̃R0)I1(kR0)R0u0

− 2k4λη0WeI1(k̃R0)I0(kR0)R
2
0 + 4ik4k̃η0WeI1(kR0)I0(k̃R0)R

2
0u0

+ 4k3k̃λη0WeI1(kR0)I0(k̃R0)R
2
0 − 2ik3k̃2η0WeI1(k̃R0)I0(kR0)R

2
0u0

− k3ReαI1(kR0)I1(k̃R0) − 2ik3λWeReαI0(kR0)I1(k̃R0)R
2
0

− 2k3λη0WeI1(k̃R0)I1(kR0)R0 − k3k̃2ReαI1(kR0)I1(k̃R0)R
2
0

− 2k2k̃2λη0WeI1(k̃R0)I0(kR0)R
2
0 + k2k̃2WeReαI0(kR0)I1(k̃R0)R

2
0u

2
0

− k2λ2WeReαI0(kR0)I1(k̃R0)R
2
0 + 2ik2k̃2η0WeI1(k̃R0)I1(kR0)R0u0

− 2ikk̃2λWeReαI0(kR0)I1(k̃R0)R
2
0u0 + kk̃2ReαI1(kR0)I1(k̃R0)

+ 2kk̃2λη0WeI1(k̃R0)I1(kR0)R0 − k̃2λ2WeReαI0(kR0)I1(k̃R0)R
2
0 = 0 (4.3)

where

k̃ =
√

k2 +
Reα(λ + iku0)

η0
, (4.4)

and In is the modified Bessel function of order n. Note for this mode w̃ = 0. In this paper R0

and u0 are functions of arclength, s, and depend upon the rotation parameter Rb and satisfy the
differential equations found in [3, 4]. This eigenvalue relationship can be interpreted in two
different ways, using a temporal or spatial instability approach. Note that (4.3) reduces to the
simpler result of Uddin et al [16] in the long wavelength limit k → 0. Also (4.3) reduces to
the classical straight jet Newtonian viscous result of [19] as Rb → ∞ and α = 1.
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(a)

(b)

Figure 1. Graph showing (a) Im(k) against Re(k) and (b) Im(k) against ω for various values of
s (We = 20, Rb = 1, α = 0.8,Reα = 40).

5. Spatial instability

Following Keller et al [20], the eigenvalue relation is considered in terms of spatial instability.
This was shown in [20] to be physically more realistic than temporal instability. An instability
mode of the form exp(ik(s)s̄ + λ(s)t̄) is considered, where k is complex, while λ = −iω is
purely imaginary and ω is a real frequency. The eigenvalue relationship (4.3) is then solved
for k, describing the wavenumber of the wave, Re(k), and its spatial growth rate −Im(k). The
mode is unstable when Im(k) < 0. The largest growth rate, Re(k) = k∗, will correspond to
the most negative value of Im(k) and ω∗ is the corresponding frequency.

The eigenvalue relationship (4.3) can be solved computationally. It can be shown
graphically how the spatial mode varies for various values of the parameters. Figure 1 shows
computational solutions to (4.3) at various values of s. In figure 1(a) each line of the graphs
has been constructed by varying ω from 0 to 5. As s increases, it can be seen that the most
unstable wave has a larger wavenumber, Re(k), yielding shorter wavelength disturbances and
a smaller growth rate, Im(k). Figure 1(b) presents a graph of the growth rate, Im(k), plotted

9
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(a)

(b)

Figure 2. Graph showing Im(k) against Re(k) at (a) s = 0 and (b) s = 10, for various Reynolds
numbers (We = 13.33, Rb = 1.12, α = 0.92).

against the frequency, ω, for various parameters. The wavenumber with the largest growth
rate occurs for higher values of ω for greater values of s.

Figures 2(a) and 2(b) show computational solutions to (4.3) at two different values of the
arclength, s. The figures describe two different points on the jet and the most unstable mode
on each curve occurs at the minimum value. Figures 2(a) and 2(b) show that decreasing the
Reynolds number causes the jet to be less unstable as the waves are more heavily damped.
For smaller Reynolds numbers, the most unstable wave occurs at longer wavelengths.

Figures 3(a) and 3(b) show that decreasing α causes the jet to become more unstable. For
larger values of α, the most unstable wave occurs at longer wavelengths.

10
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(a)

(b)

Figure 3. Graph showing Im(k) against Re(k) at (a) s = 0 and (b) s = 10, for various α

(Reα = 40,We = 20, Rb = 1).

Figures 4 and 5 show how the frequency of the most unstable mode, ω∗, associated
with (4.3) and the growth rate, |Im(k)|, of the most unstable mode vary with Rossby
number.

These graphs show the same trends as were found for a fluid of zero viscosity, that for
decreasing Rossby number the values of frequency are larger and the growth rate of the most
unstable mode reduces.

Temporal instability, which is physically less realistic [20], is considered in [23].

6. Comparison with experiments

The apparatus consists of a vertical cylindrical drum with a radius, s0 = 0.1425 m and a height
of 0.5 m (which is approximately 50% of the full industrial scale for fertilizer production at
Norsk Hydro in Norway [24]), rotating about its vertical axis. The drum was filled with fluid
to a height H, giving aspect ratios (H/2s0) ranging from 1

2 to 1
4 . A single orifice of variable

11
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Figure 4. The plot shows the frequency of the most unstable mode, ω∗, as a function of arclength,
s, for various Rossby numbers (Reα = 40,We = 20, α = 0.8).

Figure 5. The plot shows the modulus of the growth rate, |Im(k)|, as a function of arclength, s,
for various Rossby numbers (Reα = 40,We = 20, α = 0.8).

radius, a = 0.001 or 0.0015 m, was located on the cylinder wall, 50 mm from the vessel base.
Both the aspect ratio and radius of the orifice are controlled experimental parameters which
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Table 1. Properties of liquid systems.

Liquid

0.1% CMC 0.2% CMC 0.3% CMC

Density (ρ) (kg m−3) 1025.05 1025.55 1026.99

Surface tension (σ ) (N m−1) 0.0700 0.0712 0.0717
Consistency index (k) (Pa sα) 0.012 0.060 0.199
Power-law exponent (α) 0.920 0.748 0.654
U (ms−1) 0.494–2.321 0.364–2.466 0.686–2.944
We 5.37–118.45 2.91–89.37 10.19–124.68
Rb 0.52–1.90 0.39–1.21 0.37–1.08
Oh 0.02026–0.02293 0.03038–0.04648 0.04603–0.07175
Reα 70.15–372.88 11.64–95.40 9.18–43.51

influence the exit velocity of the jet. Full details of the apparatus are given in Partridge et al
[25].

The rotation rate of the drum was varied from 30 to 300 revolutions per minute (rpm)
(� = 3.14–31.4 rad s−1). The average exit velocity of the jet (assuming a small change in
total fluid height, thus a constant hydrostatic head in the can [25]) was calculated from the
volume change in the drum over a measured time interval. A summary of the experimental
conditions used is given in table 1.

Images of the jets were obtained using a high-speed digital camera (Photron Fastcam
Super 10k), recording at either 250 or 500 frames per second. The images were analysed
using Image Pro Express software (Datacell Ltd, UK) to obtain the 2D trajectories of the
jets in the plane of the image, the coherent length of the jets from the orifice to the point of
break-up and the size distribution of the droplets produced. To enable statistical measures
of the break-up lengths and drop sizes, at least 35 break-up lengths and 200 drop sizes were
measured for each experimental condition [25].

The fluids chosen for the experiments were dilute aqueous solutions of
carboxymethylcellulose, CMC (Blanose Aqualon, France), a cellulose derivative with time-
independent shear-thinning rheological properties which are best fitted using the power-law
model [26]. Three different concentrations of CMC (0.1%, 0.2% and 0.3% by weight) were
used, with physical properties shown in table 1. Values of the consistency index, k, and flow
index, α, were obtained by performing a steady-state shear ramp from 0.1 < γ̇ < 1000 s−1

using a controlled stress rheometer (TA AR 1000, TA Instruments, USA) equipped with a
4 cm, 1◦ cone and plate geometry. Several previous studies have used dilute polymer solutions
to successfully mimic power-law behaviour [11, 27]; however as an extra check, oscillatory
tests were also performed. No regime was found where the storage modulus became a
significant parameter and hence the flow behaviour appears to be viscous dominated under all
observed experimental conditions.

Surface tension, σ , was measured using a DuNouy ring tensiometer and density, ρ, was
measured using a density bottle. All measurements were repeated at least three times and the
absolute errors were less than 5%.

The break-up length, s = sb, is taken from the experimental measurements and non-
dimensionalized with respect to the radius of the drum, s0. The values of the steady-state
radius, R0(sb), velocity, u0(sb), and apparent viscosity η0(sb) are obtained from the solution
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(a)

(b)

(c)

Figure 6. The plot shows (a) u0, (b) the radius of the jet, R0, and (c) the predicted drop radius, as
a function of arclength, s, for various parameter values. For all solutions, α = 0.92.

to the steady-state equations, which can be found in [3, 4] in addition to (3.26) and (3.25) .
We then substitute R0(sb), u0(sb) and η0(sb) into (4.3) adopting the view of spatial instability
with λ = −iω. The resulting equations are solved for k numerically for various values
of ω to determine the most unstable wavenumber k∗(sb) as described in section 4. From
this it is possible to determine the radius of the main droplet produced by this instability
by calculating the volume of liquid in the wavelength at the break-up point. As these
droplets will be approximately spherical, the main droplet radius can be determined from
this volume. Equation (4.3) was solved computationally using real measured parameters from
the experiments in order to determine the wavelength and hence the theoretical drop size at
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(a)
(b)

(c)

Figure 7. Experimental main drop radius/theoretical drop radius predictions for parameter sets
as shown in table 2 plotted against the Weber number. Drop sizes are grouped by liquid system
and the error bars represent the standard deviations given by the distribution of primary drop sizes
obtained.

the experimental point of break-up. These results are then compared to drop sizes measured
experimentally.

Figures 6(a), 6(b) and 6(c) demonstrate how u0, the radius of the jet, R0, and the predicted
drop size vary with the arclength s in the computations for parameter values corresponding to
experiments. The data presented in these graphs only present numerical predictions for 0.1%
CMC, so α = 0.92. The same trends are observed for 0.2% CMC and 0.3% CMC.

Figure 6(b) shows that the radius of the jet thins as it leaves the orifice. It can also be
seen that Rossby number appears to have a greater impact on the rate at which the jet thins
than the other experimental parameters. The predicted droplet radius, shown in figure 6(c),
indicates how that parameter would vary if the jet breaks at different lengths, s. Thus, if the
jet were longer, then the drops would be smaller.

The theoretical drop radii estimated using (4.3) are given in table 2 along with the
experimental results and parameters examined. All the drop radii are normalized with respect
to the radius of the orifice, a. The value of the break-up length is taken from the experimental
observation.

The accuracy of the drop radii predictions is illustrated in figure 7. It can be seen from
figure 7, where the theoretical value of the radius is compared to the experimental mean of the
primary drop radii, that reasonable agreement between drop sizes acquired experimentally and
theoretically is obtained. The results suggest that over the range of Weber numbers treated,
the theory under-predicts the droplet radius, more than it over-predicts it and there appears to
be some correlation between the Weber number and accuracy of the prediction. As the Weber
number increases, the prediction of the droplet radius becomes less accurate.

Experimental images of the jet as the Weber number increases are shown in figure 8 and
correlate to the points marked (a), (b) and (c) in figure 7. As the Weber number increases,
these images show that the jet break-up becomes more complicated. At low Weber numbers
(corresponding to low exit velocities) the jet is fairly straight-forward as demonstrated in
figure 8(a). As the Weber number increases, so does the Reynolds number and jet break-
up becomes more complicated. As can be seen in figures 8(b) and 8(c), the jet becomes
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(a)

(b)

(c)

Figure 8. Experimental images of the jet (a) We = 5.37, Rb = 0.552,Oh = 0.0229,Re =
101.00, ρ = 1025 kg m−3, k = 0.012 Pa sn, n = 0.920; (b) We = 23.50, Rb = 0.588,Oh =
0.0356,Re = 136.11, ρ = 1026 kg m−3, k = 0.061 Pa sn, n = 0.748 and (c) We = 65.99, Rb =
0.473,Oh = 0.0519,Re = 156.31, ρ = 1027 kg m−3, k = 0.199 Pa sn, n = 0.654.

increasingly complex for increasing Weber number and it is more difficult to accurately
predict drop size.

The computations predict that different drop sizes arise depending on where the jet breaks.
Figure 6(c) shows the drop size that will arise for different break-up lengths, calculated using
the steady-state and the eigenvalue relationship (4.3). The actual break-up length depends
upon the size of the disturbance at the orifice. If we know the size of the disturbance at
the orifice, then the theory can be used to predict the break-up length. Experimental work
with known forced disturbances at the orifice will follow, but this paper concerns unforced
jets where the size of the disturbance at the orifice is unknown. The results in table 2 are
determined by experimentally observing the break-up length and using that value to feed
into the computations to predict the resulting drop size. However, at high Weber number,
figure 8(c) shows that determining the location of the break-up point experimentally is not
straightforward; there is not always a unique break-up point, but the jet may break at several
locations simultaneously. Moreover, while the Weber number at the orifice, which is the
Weber number quoted throughout the paper, is high, if a local Weber number were to be
calculated on the ligament, this would probably be quite small as the speed of the flow within
the ligament (not relative to the orifice) will be quite different to the initial speed of the jet, U,
and the radius of the ligament is much smaller than a. Therefore, the break-up in 8(c) may
not be convective, but instead absolute.

16



J. Phys. A: Math. Theor. 43 (2010) 055501 V L Hawkins et al

Table 2. Table of normalized drop sizes for experiments and predictions using the numerical
model.

Experimental Model
k (Pa sα) α We Rb Reα value ± s.d. prediction

0.012 0.92 16.06 1.90 126.39 1.434 ± 0.138 1.6707
0.012 0.92 20.58 1.08 144.17 1.389 ± 0.142 1.3523
0.012 0.92 5.37 0.55 70.15 1.341 ± 0.112 1.1622
0.012 0.92 19.76 0.53 141.69 1.305 ± 0.129 0.9623
0.012 0.92 48.47 0.55 230.20 1.423 ± 0.161 0.9615
0.060 0.748 6.46 1.21 19.16 1.252 ± 0.126 1.5921
0.060 0.748 8.34 0.69 22.49 1.376 ± 0.119 1.995
0.060 0.748 2.91 0.41 11.64 1.104 ± 0.144 1.1928
0.060 0.748 10.41 0.39 25.99 1.248 ± 0.115 0.8356
0.060 0.748 23.50 0.39 43.58 1.020 ± 0.085 0.7321
0.060 0.748 83.21 0.44 95.40 1.161 ± 0.103 0.713
0.060 0.748 14.60 1.10 27.33 1.993 ± 0.178 1.4856
0.060 0.748 38.37 0.89 49.72 1.584 ± 0.133 1.2015
0.060 0.748 44.63 0.65 55.39 1.325 ± 0.123 0.9341
0.199 0.654 10.19 0.38 9.18 1.154 ± 0.094 1.3213
0.199 0.654 13.54 1.08 9.73 1.833 ± 0.156 1.4754
0.199 0.654 26.32 0.75 15.14 1.632 ± 0.129 1.0835
0.199 0.654 60.21 0.59 18.80 1.407 ± 0.125 0.9472
0.199 0.654 20.17 0.66 12.77 1.699 ± 0.194 1.0826
0.199 0.654 32.74 0.56 17.69 1.529 ± 0.145 0.8854
0.199 0.654 46.23 0.49 21.83 1.173 ± 0.126 0.8551
0.199 0.654 66.00 0.47 28.04 1.345 ± 0.158 0.8428

7. Conclusions

The effect of apparent viscosity on the trajectory of a rotating, slender non-Newtonian liquid
jet emanating from a small orifice has been examined by incorporating the effects of non-
Newtonian power-law rheology into the existing steady-state equations derived by Wallwork
et al [3]. Apparent viscosity only appears as a higher order (in ε) correction to the inviscid
steady centreline.

A linear dispersion relation has been obtained that can be solved computationally to
establish the behaviour of wave modes as they propagate along a curved liquid jet. As the
arclength, s, increases, the growth rate decreases, and the wavenumber with the largest growth
rate occurs for higher values of frequency, ω.

Experiments have been performed to determine the trajectory and break-up of slender
liquid jets over a wide range of parameters, with measurements of break-up length and drop
size being taken. The mean droplet radius produced by instability has been determined using
the linear instability calculations and the experimental value of break-up which enables a
comparison between experimental and theoretical work. Some good points of agreement have
been obtained between theoretical and experimental measurements of the size of the drops
produced by instability, particularly at lower Weber numbers. At higher values of the Weber
number, break-up may be via absolute instability on the observed slender ligament: this will
be the subject of future work. All the fluids were tested for viscoelastic effects; however, at
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high Weber number the jet does appear less laminar and there is the possibility that at high
Weber number the stresses the fluids are being subjected to are more severe than can be tested
accurately in the rheometer, particularly near break-up. It would be interesting to extend this
work using the Olroyd-B model to see if there is any hint of viscoelasticity in the experimental
results.
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